首页> 外文OA文献 >A Biologically Inspired Vision-Based Approach for Detecting Multiple Moving Objects in Complex Outdoor Scenes
【2h】

A Biologically Inspired Vision-Based Approach for Detecting Multiple Moving Objects in Complex Outdoor Scenes

机译:一种基于生物启发的视觉方法,用于检测复杂室外场景中的多个移动物体

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the human brain, independent components of optical flows from the medial superior temporal area are speculated for motion cognition. Inspired by this hypothesis, a novel approach combining independent component analysis (ICA) with principal component analysis (PCA) is proposed in this paper for multiple moving objects detection in complex scenes—a major real-time challenge as bad weather or dynamic background can seriously influence the results of motion detection. In the proposed approach, by taking advantage of ICA’s capability of separating the statistically independent features from signals, the ICA algorithm is initially employed to analyze the optical flows of consecutive visual image frames. As a result, the optical flows of background and foreground can be approximately separated. Since there are still many disturbances in the foreground optical flows in the complex scene, PCA is then applied to the optical flows of foreground components so that major optical flows corresponding to multiple moving objects can be enhanced effectively and the motions resulted from the changing background and small disturbances are relatively suppressed at the same time. Comparative experimental results with existing popular motion detection methods for challenging imaging sequences demonstrate that our proposed biologically inspired vision-based approach can extract multiple moving objects effectively in a complex scene.
机译:在人脑中,推测来自内侧颞上区域的光流的独立成分用于运动认知。受此假设启发,本文提出了一种结合独立成分分析(ICA)和主成分分析(PCA)的新颖方法,用于复杂场景中的多个运动物体检测-由于恶劣的天气或动态背景会严重影响实时性,这是一个重大的实时挑战影响运动检测的结果。在提出的方法中,通过利用ICA的功能,可以将统计上独立的特征从信号中分离出来,最初使用ICA算法来分析连续视觉图像帧的光流。结果,背景和前景的光流可以大致分离。由于在复杂场景中前景光流中仍然存在很多干扰,因此将PCA应用于前景分量的光流,从而可以有效地增强与多个运动对象相对应的主要光流,并且由于背景和图像的变化而产生运动。小干扰同时被相对抑制。与具有挑战性的成像序列的现有流行运动检测方法的比较实验结果表明,我们提出的基于生物学启发的基于视觉的方法可以在复杂场景中有效地提取多个运动对象。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号